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We are interested on studying diffusion process of a half occupied clean surface. Our calculations are performed in the 
framework of lattice gas model using Monte Carlo simulation. We analyze the behavior of the relevant physical quantities as 
diffusion coefficient tracer and specific heat. We consider first JFN and second JSN neighboring repulsive interactions with 
the ratio R = JSN / JFN in the [0.1] range. We show that the second repulsive neighboring interactions induce an 
order/disorder transition for some critical values of R that affect the surface diffusion mechanism. 
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1. Introduction 
 
Diffusion process in layered systems is still a typical 

question [1-7] as it is present in many different phenomena 
such as adsorption/desorption [8,9], crystal growth or 
catalytic reactions [10,11]. Effort has been devoted to the 
understanding of the dynamics of this process because of 
its technological importance. Investigations deal with 
experimental and theoretical study. Scanning tunneling 
microscopy [12,13] as well as field microscopy technics 
[14-16] have shown that effects of lateral interactions on 
diffusion process are relevant for the establishment of 
ordered structures. 

Theoretical studies of the dynamics of diffusion 
process in systems undergoing phase transition suffer from 
the absence of a systematic method that takes into account 
time evolution of cooperative phenomena. Only the crude 
approximation named mean field approach allows 
analytical progress [17-19] that helps in understanding the 
studied phenomenon at the price of overestimating the 
critical regions. For the convincing works are no doubt 
those using numerical methods especially the stochastic 
Monte Carlo simulation of diffusion in two-dimensional 
surface. The latter was successfully used in many different 
situations [20-22]. However the dynamics of diffusion 
with the presence of ordering in the case of first and 
second neighboring repulsive interactions has been 
omitted even its potential technological applications. In 
fact, experimental studies of some layered crystals such as 
K₂CoF₄ and Rb₂CoF₄ [23-25] clearly show anisotropic 
antiferromagnets suggesting the presence of the mentioned 
interaction regime. This is the aim of the present work. 

From simple physical consideration, it is intuitively 
expected that repulsion between adatoms accelerates 
surface migration. In contrast, attractive interactions 

should inhibit adatom diffusion. These simple rules 
qualitatively describe the characteristics in many 
adsorption systems. However, more sophisticated 
arguments are required for the description of surface 
diffusion in case of phase transition when strong lateral 
interactions force the system to order near a critical 
temperature [25,26].  In the present work, we study statics 
and dynamics proprieties of the adparticles on a square 
lattice using Monte Carlo method. 

We consider a regular clean surface where adsorbate 
particles can perform activated jumps. Our calculations are 

limited to a half-filling lattice ( 0.5θ = ). Interaction is 
extended to second neighboring. The ratio 

/SN FNR J J=  between first and second nearest 

neighbors is in the [ ]0,1  interval. This study is performed 
in the canonical ensemble and deals with effects of the 
critical behavior on diffusion process. 

The paper is organized as follows: In the next section, 
we present the lattice gas model. In section 3, we describe 
technic and the algorithm used. In section 4, the results are 
presented. The conclusion is given in the last section.  

 
 
2. Lattice gas model  
  
The potential minima of the crystalline structure are 

nodes of a square lattice that can be occupied by adsorbate 
moving particles. The state of each node " i  " is quantified 

by a Boolean variable " in  " called occupation number for 
which the values  "0"  and "1"  denote empty and 
occupied site, respectively. We consider first neighboring 
JFN and second neighboring JSN static interactions 
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between pair of particles. The following Hamiltonian gives 
the interaction energy: 

 

, ,

1 1
2 2FN i j SN i k i

i j i k i

H J n n J n n µ n= − − −∑ ∑ ∑
 (1) 

The symbols ...〈 〉  and ...〈〈 〉〉  represent nearest and next 
nearest neighboring sites respectively and µ is the 
chemical potential. JFN is taking to be negative to 
represent repulsive nature of the interaction. 

 For a conserved concentration of the lattice there are 
so many different possible configurations. Let 

({ }, )P n t be the probability of finding the 

configuration{ }n at time t . Time evolution of the lattice 
consists on change of configurations as a consequence of 
particles hope to empty sites. Focusing the desired 
configuration there are many jumps that contribute 
positively to its establishment and others that just do the 
opposite. This is formally expressed by the 
phenomenological master equation hence defined [26]: 

 

[ ]
{ '}

({ }, ) ({ '},{ }) ({ '}, ) ({ },{ '}) ({ }, )
n

P n t W n n P n t W n n P n t
t

∂
= −

∂
∑

                         
(2) 

 
({ '},{ })W n n is the transition frequency from { }n to 

{ '}n  and should include the physics of the system. Hence 
it is a function of the Hamiltonian H. Equation (2) can be 
seen as a continuity equation expressing that total 
probability is conserved at all times. The master equation 
has been solved for the unique case of one particle 
diffusing on uniform regular lattice [27]. Transition rate 
was taking to be of Arrhenius-like form as jumps are 
promoted by thermal activation. The equation has been 
diagonalized in reciprocal space and led to Lorentzian 
behavior whose width is related to quasi-elastic incoherent 
neutron scattering [28]. A part from this case the master 
equation is completely non-linear and is suitable only for 
numerical solution when the studied phenomenon can be 
assimilated to a Markovian process i.e. there is complete 
loss of history and time evolution is only determined by 
the state at present time. Equilibrium state is reached when 
transition between two configurations is made without 
loose of energy. Resulting expression is called detailed 
balance condition. 
 

({ '},{ }) ({ '}) ({ },{ '}) ({ })eq eqW n n P n W n n P n=
     (3) 

 

 Where 
({ })eqP n

is given by 
 

 

exp( )({ })eq
HP n

Z
β− ∆

=
                (4) 

 

β denotes the inverse reduced temperature and ∆H 
corresponds to the energy difference between the final and 
the initial configuration. We recall that in the metropolis 
algorithm [31,32] a site is allowed to change its state  if 
the global energy of the system is reduced or a response to 
a local deformation of the lattice represented by the 
comparison of the adsorption/desorption length  to a 
number chosen at random. Z  denotes the partition 
function and is unknown but luckily cancelled by taking 
the ratio of individual probabilities relative to each 
configuration of the Markov chain states. As there is not 
unique choice of the transition probability any expression 
written versus energy difference is acceptable. 
 
 

3. Method and algorithm 
 
Transition rate is chosen according to Metropolis 

algorithm [29]: 
 

min(1,exp( ))W Hβ= − ∆                   (5) 
 

For this algorithm any elementary process is realized 
once the finale state contributes to the stability of the 
system. Hence, it accepts the configuration changes that 
lower energy of the system. Otherwise, occurrence of the 
process is conditioned by the comparison of the transition 
rate to a random number. Metropolis algorithm suffers 
from allowing adsorption/desorption processes for every 
attempt in the high temperature limit leading to an 
oscillation between states of the system. Ergodicity 
principle is then violated. But this has no effect on the 
temperature range of interest in this study, a periodically 
bounded bidirectional lattice of square geometry and 
lateral size L is considered. Tendency towards equilibrium 
is done by means of metropolis algorithm. The specific 
heat is defined as: 

 
22.( )VC E Eβ= −

                       (6) 
E  denote the system energy and β  represents the inverse 
reduced temperature.  Diffusion process is investigated by 
computing the diffusion coefficient tracer *D .  The latter 
is defined as the mean square displacement of tagged 
particles [33]:  
 

2

1

1* lim ( ) (0)
2

N

i it i
D r t r

Ntd→∞ =
= −∑

           (7)  
 

 where d is the system dimension ( 2)d = , t  is the 
elapsed time expressed in units of Monte Carlo step 

( XL L  random interrogations) and 
( ) (0)i ir t r−

 is 
expressed in unity of the lattice constant[31]. 
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4. Results and discussion 
 
To establish critical values for R, we compute the 

specific heat. Their effects on diffusion process are 
deduced from calculating the tracer diffusion coefficient.  
 

 
Fig. 1. Specific heat versus R  at different values of  invers 

reduced temperature and 0.5θ = . 
    
 

In Fig. 1 we plot the curve representing the specific 
heat CV as a function of R, the ratio between second JSN  
and first JFN nearest neighbors.  We note that each graph 
presents two peaks for different values of R. The first peak 
appears at a value of R lower than 0.5, which it shows that 
our system goes through a phase transition. This phase is 

characterized by an ordered structure such (2 2)Xθ . 
Second peak is reached when R is greater than 0.5. In 

this case, our system also passes through a phase 

transition, but the structure is (1 2) / (2 1)X Xθ θ  ordered 
type. The peaks found, agree with the phase transition 
diagram of reference [34].  
 
 

 

Fig. 2. Tracer diffusion coefficient versus R at 
3FNJβ =

  

and 0.5θ = . 

Fig. 2 represents the evolution of the tracer diffusion 
coefficient for only one value of temperature used in Fig. 1 
( 3)FNJβ =  . We note that the graph of Fig. 2 presents 
two inflection points. The study of the function derivative 
from each curve, reveals the coordinates of each point 
inflexion (Fig. 2,3). This allowed us to identify critical 
properties of our system. 
 

 
Fig. 3. Derivative function of tracer diffusion coefficient  

versus R at 
3FNJβ =

 and 0.5θ = . 
 
 

5. Conclusion 
 
In this work, we are interested on studying diffusion 

process of a half occupied clean surface. We analyze the 
behavior of the tracer diffusion coefficient, and specific 
heat. We consider first JFN and second JSN neighboring 
repulsive interactions with the ratio R= JSN / JFN in the 
[0.1] range, and show that the second repulsive 
neighboring interactions induce an order/disorder 
transition for some critical values of R that affect the 
surface diffusion mechanism.  This allows to note that 
repulsive interactions are not always favorable to diffusion 
process, but can lead to ordering on the lattice. 
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